August 7, 2007

TECHNIQUES FOR
BUILDING AND EXTENDING
NIEM XML COMPONENTS

VERSION 2.0.1

Georgia Tech Research Institute
URI: http://reference.niem.gov/niem/guidance/techniques-for-building-and-extending/2.0.1/

Abstract:

The National Information Exchange Model (NIEM) provides structure, standards, and methods
for defining and sharing information exchanges between and within agencies and domains.
This paper introduces the fundamental technical aspects of NIEM at a high level, and provides
an overview of the NIEM IEPD development lifecycle. It discusses the key NIEM data model
concepts, and then outlines the basic techniques for extending NIEM. The paper concludes with
a discussion of some standard NIEM extensions.

NATIONAL INFORMATION EXCHANGE MODEL | NIEM.gov

http://reference.niem.gov/niem/guidance/techniques-for-building-and-extending/2.0.1/

O©CoOoO~NOOOITrWN -

Table of Contents

R [] oo [FTox 1 o] TP PSR TPRPPRTRPRPRON 1
2 NIEM OVEIVIBW.......ceiiieiieiie sttt sttt bttt st b sseeste et sne e beenbesneenreas 1
3 NIEM IEPD Development Lifecycle - OVEIVIEW.........ccecvvieieerie e siee e 4
4 NIEM Data MOdel CONCEPLS ...ccvveiveeiiiiiiiiesieeie et 7
4.1 NTEM TYPES...ei ettt et s e e s be e e enes 7
4.2 NIEM PrOPEITIES ...ttt sttt sttt 8
4.3 NIEM 2.0 Conformant NameSPaCESc.ccveverierieiereesieeieseesieeeesee e sneesaeens 9
4.4 NIEM Type and Properties EXample ... 10

5 EXtENSION TECANIQUESvveveeeieiie ettt ae e sreeeeenes 13
5.1 Designing the Exchange Schema Document Element..........cccccooeviiieinninene 13
5.2 Designing NEeW NIEM TYPES......ccceiierieiiesieerieseesieesiesraeseesieseessaesseeneesseesseans 14
521 NIEM Type COMPOSITION ...ovviiiiiieiiieiiieie et 14
522 NIEM Type Specializationccccceviveviiiiiiese e, 15

5.3 Adding to EXiStiNg NIEM TYPESc.eeiieiiiieiieiieeie e 17
53.1 AddINg Metadata..........c.ooiveiieieiierece e 17
5.3.2 AddINg AUGMENTALIONSveeveiiiieiiieie e 20
5.3.3 Using Element SUBSHITULIONccveiveiiiic e 23

5.4 Choosing an Extension TEChNIQUE.........c.cooiiiiiiniiiiieiee e 27
54.1 Create New NIEM Types or Add to EXisting Types?ccccccvvvvereiivnrnnns 27
54.2 NIEM Type Composition or Specialization?............cccoevvviieneniienennnnn, 27
54.3 NIEM Type Specialization or Augmentation?ccccccevevieerivereseennnnn, 27
544 Augmentation or Metadata?..........ccccvveeiiereniieneenese e 28
545 Content or Reference EIEMentS?.........cccoovviiiiiniinieiee e 28

6 Standard NIEM EXIENSIONS.cc.ciiiiiiiiriieiieie et 28
B.1 ROIES s 28
6.2 ASSOCIALIONS ..ottt sttt b bbb neas 30
6.3 Adapting External Standardsccccooeiiiiieiinine e 33

A o] 4 [0d 1] o] [OOSR 36
Appendix A AN TEPD EXAMPIE........ooiiiiiiiii e 37
Appendix B NIEM 2.0 Release DireCtory Tre€cvcvvviveveiiieiieii e seese e 38

Appendix C NIEM 2.0 Code Table NamMeSPaCES..........ccrvrrevrirerieineneese e 45

33

34
35
36
37
38
39
40
41
42
43

44
45
46
47
48
49
50
o1
52

53
54
55
56
57
58
59
60

61
62
63
64
65

66
67
68
69
70
71

72

73
74

1 Introduction

The National Information Exchange Model (NIEM) provides structure, standards and
methods for defining and sharing information exchanges between and within agencies
and domains. Developing and implementing exchanges using NIEM means that the
major investments local, state, tribal, and federal governments have made in existing
information systems can be leveraged, and that these government agencies can efficiently
participate in a truly national information sharing environment. NIEM standards enable
different information systems to share and exchange information irrespective of the
particular technologies at use. Moreover, creating and adopting NIEM standards means
that local, state, tribal, and federal organizations avoid the problem of rebuilding or
significantly altering their systems to share information.

Conceptually, NIEM can be thought of as a data model and a reference vocabulary from
which XML Schema-based data components are rendered. These components serve as
the basis for these information exchanges. In conjunction with concepts and rules that
underlie the NIEM structure, maintain its consistency and govern its use, these NIEM
data components can be reused by information practitioners to create an Information
Exchange Package Documentation specification, or IEPD. An IEPD is a collection of
XML Schemas, XML instances, and other documentation and artifacts that is the
electronic representation of the rules governing an information exchange. An exchange
instance that obeys these rules is referred to as an Information Exchange Package (IEP).

In some cases, the NIEM data model provides everything needed to create an information
exchange, and the practitioner may simply wish to use the existing data components, or a
subset of them, to model the exchange. However, for concepts needed in the exchange
that are not adequately represented by existing NIEM data components, the practitioner
can model additional concepts to supplement those data components. These new
concepts are represented in the form of new XML Schema types and elements which
unambiguously define the additional syntax and semantics of the information being
exchanged.

This paper introduces NIEM at a high level, and provides an overview of the NIEM IEPD
development lifecycle. It discusses the key NIEM data model concepts, and then outlines
the basic techniques for extending and augmenting the NIEM provided data components,
for creating meaningful links between new and existing data items and for adapting
external standards for use in the NIEM framework.

The audience for this paper is government practitioners and developers who employ
XML for information exchange and interoperability. This community will use the NIEM
framework and the techniques outlined in this paper to establish and standardize their
schemas and documents for use on a national level. At the same time, the NIEM
framework and extension techniques allow these users the freedom to create data
constructs that also satisfy requirements at the local level.

2 NIEM Overview

The NIEM is a reference model of unconstrained components rendered in XML Schema.
Associated with the NIEM schemas is an XML reference architecture that organizes and

75
76
77

78

79

80
81
82
83
84

85
86
87
88
89
90

91
92

93
94

95
96

97
98

guides the employment of the various kinds of schemas that compose a NIEM
information exchange. The XML reference architecture describes the relationships
between XML schemas for NIEM IEPDs.

|

: (WAL ioiibuliinlfs, XML Schema |1

- - L FJ

I schemas !

—-—— -
_______ N
\: | NIEM schemas or subset of | [*Constraint schema) :

- o o o o —— o o o e o e — e

Conformance Constraint
Validation Path Validation Path

I [*Extension schema Extension schema
i : may also have its
I Namespace | | own target
“““““ I | *Exchange schema | | namespgce
* Optional ‘g____ S
f Namespace import Exchange schema
may also import
1 Namespace reference [XML instance document] extension and
subset in parallel

Figure 1: The NIEM XML Reference Architecture

The NIEM Naming and Design Rules (NDR) document (available from
(http://www.niem.gov//files/NIEM-NDR-1-1-lineNum.pdf) specifies the rules for the
creation of the XML components and XML data appearing in the NIEM XML reference
schemas. XML schemas and components which obey the rules set forth in the NDR are
considered to be NIEM-conformant.

A NIEM IEPD is a set of artifacts that describe an Information Exchange Package (IEP),
a standard message structure as defined by the Federal Enterprise Architecture
Consolidated Reference Model Document (available from
http://www.whitehouse.gov/omb/egov/documents/FEA_CRM_v21 Final_Dec_2006.pdf
) The NIEM IEPD Specification contains a more detailed explanation of IEPDs and their
contents, and is available from http://www.niem.gov//files/NIEM_IEPD_Requirements_v2_1.pdf

The following kinds of XML schemas are associated with the NIEM reference
architecture:

* NIEM reference schemas: Schemas containing content created or approved by
the NIEM steering committees are periodically released in schema distributions.

* NIEM support schemas: NIEM includes two special schemas, the appinfo and the
structures schemas, for annotating and structuring NIEM-conformant schemas.

» Extension Schema: a NIEM-conformant schema which adds domain- or
application-specific content to the base NIEM model.

http://www.niem.gov//files/NIEM-NDR-1-1-lineNum.pdf
http://www.whitehouse.gov/omb/egov/documents/FEA_CRM_v21_Final_Dec_2006.pdf
http://www.niem.gov//files/NIEM_IEPD_Requirements_v2_1.pdf

99
100

101
102
103

104
105
106
107

108
109
110
111
112
113

114
115
116
117

118
119
120
121
122

123
124
125
126

127
128
129
130
131

132
133
134

135
136
137
138
139
140
141

» Exchange Schema: a NIEM-conformant schema which specifies a document in a
particular exchange.

* Subset Schema: a profile of a NIEM-conformant schema, derived from a
reference schema, but which specifies instances that only require a portion of the
reference schema.

e Constraint Schema: a schema which adds additional constraints to NIEM-
conformant instances, but which is assumed to validate in concert with existing
NIEM-conformant or subset schemas. A constraint schema need not validate
constraints that are applied by other schemas.

The only mandatory schemas for validation are the NIEM reference schemas or correct
subsets. The NIEM schemas may import additional schemas, such as code table
schemas, as needed. The optional exchange schema imports, re-uses, and organizes the
components from the NIEM for the particular exchange. An optional extension schema
may be used to add extended types and properties for components not contained in the
NIEM, but which are needed for the exchange.

Note that while only the reference schemas, or subsets thereof, are required for validation
of a NIEM-conformant instance, the IEPD specification requires that an IEPD include an
exchange schema along with the reference schemas (or subsets) to be considered a
complete IEPD.

The exchange and extension schemas can be combined into a single schema and
namespace, or can be broken out into separate schemas and corresponding namespaces.
The user may decide the best way to organize components. If the extension components
will be reused elsewhere, it may be more efficient to maintain them in a separate
namespace, rather than including them in a document namespace.

The NIEM reference schemas are over-inclusive and under-constrained. The reason for
this approach is that pre-determining all user needs and constraints is rarely possible. The
only way to reach consensus on components is to include all obvious requirements and
maintain relatively relaxed constraints.

To ensure interoperability, specific component requirements and constraints are
determined on a per-exchange basis (in IEPDs). By creating a subset of NIEM Core,
reference and code table schemas, the user can limit the components to only those he or
she needs. In the future, a business component layer between IEPDs and NIEM will
allow domains to apply consistent requirements and constraints for their exchanges.

The basic principle for a subset is that an instance that validates against a correct subset
schema will always validate against the full reference NIEM schema set. The user may
also adjust cardinality constraints, as desired, within the subset schemas.

Additional constraints may be handled in a constraint schema. A constraint schema is
derived from a subset schema. However, it may contain other constraints (for example,
additional types for specific constraints). The constraint schema provides an alternative
constraint validation path that allows the user to reduce the possible set of allowable
XML instances, independent of the NIEM schema or subset conformance validation path.
This is done through multi-pass validation. A correctly constructed XML instance will
validate through both the conformance and the constraint path.

142

143
144
145

146

147
148

149
150
151
152
153
154

155

156
157
158
159
160

3 NIEM IEPD Development Lifecycle - Overview

While this paper is focused on the NIEM extension techniques, it is helpful to understand
where those techniques fit in the IEPD development lifecycle. This section briefly
discusses the IEPD lifecycle, and shows where NIEM extension may be necessary.

Figure shows the high level outline of the IEPD lifecycle.

Executive orders, mission
statements, business

requirements, business context, '-l‘-.

and policies and procedures

Specific information
j =* exchange, high-level

LLL. IEPD for reuse
library e—- business requirements

r 4 6\ ’ o
A Data Requirements,
/ : L busines context,
j exchange model

LLL. Complete IEPD /
N;E’I'} ER
—

The IEPD Lifecycle

Existing
4mm|EPD artifacts

IEPD artifacts to share
and reuse, metatdata
for discovery

components, component
business context

Valid IEPD schemas, / I \ LIL Mapping, specifications

L example instances, for new components
IL. documentation, and NIEM NDR

=0

Figure 2: IEPD Lifecycle

l Submission of candidate NIEM

This section will briefly discuss each of the steps that appear in the figure. For more
detailed information on the lifecycle, please refer to the IEPD Development Lifecycle
section of the NIEM Concept of Operations, available on the NIEM Web site at
http://www.niem.gov//files/NIEM_Concept_of Operations.pdf While this paper focuses
primarily on the XML creation aspects of the IEPD lifecycle, it should be stressed that all
steps in the lifecycle are important in the creation of an IEPD.

Step 1: Scenario Planning and Business Taxonomies

Scenario planning and business taxonomies are two methodologies that can be used for
identifying specific information exchanges. Scenario planning is a bottoms-up approach
and depicts either current information exchange practices among involved parties, or
potential future environments that envision broader and more expansive information
sharing, as well as changes in business practices or processes. Business taxonomies

http://www.niem.gov//files/NIEM_Concept_of_Operations.pdf

161
162
163
164
165
166

167
168

169
170
171
172
173
174
175
176

177

178
179
180
181

182
183
184

185
186
187
188
189
190
191
192

193
194
195
196
197
198
199

200
201
202

employ a top-down approach which requires documenting the business operations of an
organization using a common framework, such as that defined in the Federal Enterprise
Architecture Business Reference Model (BRM), available at
http://www.whitehouse.gov/omb/egov/a-3-brm.html. Regardless which approach a
developer takes—scenario planning or business taxonomy analysis—the result is the
identification of specific information exchanges that are the object of IEPD development.

Step 2: Analyze Requirements - Identify and Document Information Exchange
Requirements

The IEPD developer selects one or more related exchanges identified during Step 1 to
fully elaborate and build a domain model. The IEPD developer may decide to document
multiple information exchanges inherent in an operational scenario or business
requirement using the IEPD lifecycle, following the steps which are here described. To
build a domain model, the IEPD developer can use information exchange modeling
(IEM) tools to model the precise nature and content of the exchange. The outputs of this
step include the business context, data requirements and a domain model for the
exchange.

Step 3: Map Domain Model to NIEM

The IEPD developer maps NIEM components to the data components (or requirements)
in the domain model using his preferred tools. During this mapping, the developer may
find there are matches, partial matches, and no matches between the domain model and
data components in the NIEM model.

When there are partial matches or no matches, the extension techniques outlined in
this document will be used to add local extensions to the IEPD. These may become
candidates for later submission to NIEM.

Matching components can involve those where the component names may differ but
where the data components themselves are semantically and structurally equivalent, i.e.,
there is a one-to-one mapping between the NIEM and the source component. Partial
matches can arise when there are similarities, but also some differences between data
components. These differences can include semantic or structural mismatches, element
naming collisions, or mismatches at the value set, data type or lexical levels. For partial
matches, it is necessary to document the need for extension or refinement of existing data
components.

Data components with no matching NIEM data components comprise a set of additional
element types that are candidates for insertion into the NIEM. Depending on the nature
of the potential inclusion in the model, recommendations may include adding a new or
subordinate type, adding an element, extending a value set, modifying a data type or
lexical representation, renaming data components, or revising a definition. For
components that do not match at all, a NIEM-conformant component must be created,
following the rules specified in the NIEM Naming and Design Rules (NDR).

The output of this step is the component mapping between the domain model in Step 2
and NIEM, along with the newly modeled components. These newly modeled
components become new candidate components for submission to NIEM.

203

204
205

206
207
208

209
210

211
212
213

214
215

216
217
218

219
220

221
222
223
224
225
226
227

228
229
230
231
232

233

234
235
236
237

238

239
240
241
242

Step 4: Build and Validate IEPDs

Based on the new data components and component mapping identified in the map and
model step, the IEPD developer builds and generates IEPD schema artifacts including:

e Subset schema: Constructed by extracting from the reference schema set those
types and elements needed for a specific information exchange. The NIEM
Schema Subset Generation Tool (SSGT) can assist with this process.

e Extension schema: Defines an IEP-specific namespace that contains types,
elements, and attributes needed for the IEP but which are not in NIEM.

e Constraint schema: Adds additional constraints (such as cardinality) or
restrictions to the types and elements in the subset. Constraint schemas do not
have to be NIEM-conformant.

e Exchange schema: Contains the document element (also known as the root
element) and may also define basic IEP content.

The extension and exchange schemas will contain the XML representations of the
local extension of the NIEM model. These representations are the artifacts of the
extension techniques outlined in this document.

The subset and exchange schemas are mandatory for an IEPD. The extension and
constraint schemas are optional.

As part of this step, the IEPD developer may also build one or more sample XML
instances and eXtensible Stylesheet Language (XSL) stylesheets. These XML instances
are examples of the data exchange documents defined by this IEPD and the payload
documents that are actually exchanged. Not only do they serve as example artifacts for
the IEPD, but they can also be used to validate the schemas for the IEPD. XSL
stylesheets are used to consistently format the data within the XML instances to meet
display or output requirements.

To further define the IEPD, additional documentation is also needed. This should include
the domain model, business rules, change log (or the initial file for such), basic metadata,
a catalog or manifest, and other artifacts as required by the NIEM IEPD Specification.
The outputs of this step are the valid schemas, example instances, documentation
artifacts, and metadata.

Step 5: Assemble IEPDs to IEPD Specification

Once all of the schemas, documentation, metadata, etc. have been captured, the IEPD can
be generated based on the format defined in the NIEM IEPD Specification. The NIEM
IEPD Tool can assist with this process. The output of this step is a complete IEPD,
which provides reference for other users.

Step 6: Publish and Implement Exchanges

The final output of the IEPD lifecycle is an IEPD that is published and available for
search, discovery and (re)use. The NIEM IEPD Specification defines a portable, self-
contained, self-documented, machine readable package that enables IEPD registration
and storage in virtually any location. IEPD developers have the option of publishing an

243
244

245
246
247
248

249
250

251

252
253
254
255

256
257
258
259
260

261
262
263
264

265
266
267
268

269
270
271
272
273
274

275

276
277
2178

279

IEPD to their own repository, an industry-wide repository, or to register and publish an
IEPD through the NIEM Program.

4 NIEM Data Model Concepts

The NIEM data model is based on two types of data model constructs
e NIEM types
e NIEM properties

Together, these two data model concepts are used to model generic and domain-specific
concepts in a way that maximizes reuse and extension within the NIEM framework.

4.1 NIEM Types

A NIEM type corresponds to the abstraction of either a real world object, such as a name,
or a conceptual object, such as a relationship. In object-oriented terminology, a NIEM
type corresponds to a “class.” NIEM types are represented in XML Schema as XML
Schema complex and simple types.

All XML Schema types associated with NIEM types must incorporate one of the NIEM
base types that are defined in the NIEM Structures schema. These NIEM base types
contain the hooks for adding NIEM-compliant constructs to the NIEM data model, such
as new NIEM types, or custom metadata and/or augmentations for existing NIEM types.
The details of these local extension techniques will be discussed in Section 5.

The process of representing specific objects of the NIEM types in an XML document is
called “instantiation”. The XML fragment that is created based on the NIEM type is
considered to be an “instance” of the NIEM type. In object-oriented terminology, an
instance of a NIEM type corresponds to an “object.”

Instances of NIEM types appear in XML exchange documents relevant to a particular
information exchange. These documents obey the rules set forth in the XML Schemas
generated from the NIEM data model, and in the exchange-specific NIEM document or
extension schemas.

Note that the unmodified term “type” is ambiguous in the context of discussing the NIEM
data objects — it could either refer to a NIEM type or an XML Schema type that
represents the NIEM type in an XML Schema. In this paper, we will always refer to
NIEM types or XML Schema types so it is clear from the context which kind of type is
being discussed, the data model concept or its XML Schema representation. In addition, a
reference to a NIEM type appears in quotes, like this

“ComplexObjectType”

whereas the XML Schema representation of that type appears in a Courier font, and is
preceded with the standard XML namespace prefix associated with the containing
schema’s namespace, like this:

s:ComplexObjectType

280

281
282
283
284
285

286

287
288

289

290
291

292

293
294

295
296
297

298
299
300
301
302
303

304
305
306
307
308
309

310
311
312
313

314
315
316
317
318

4.2 NIEM Properties

A NIEM property describes a pair-wise relationship between instances of NIEM types.
NIEM properties have two variations — a pair-wise relationship between a NIEM
component and a value, and a pair-wise relationship between two NIEM components.
The way NIEM types and properties work together, and are represented in XML Schema,
are described as follows:

e A NIEM type has one or more NIEM properties.

o This rule is represented in XML Schema by defining the properties as
XML Schema elements within an XML Schema complex type.

e A NIEM property has a value.

o This rule is trivially represented in XML Schema by the assignment of
values to XML Schema components.

e The NIEM property’s value is an instance of another NIEM type.

o This rule is represented in XML Schema by assigning values that are
instances of XML Schema simple or complex types.

The association of a NIEM property with a NIEM type means that an instance of a NIEM
type has a characteristic, a relationship, or a subpart represented by an instance of that
NIEM property. For example:

e A NIEM type “PersonType” may have the property “BirthLocation” to indicate a
relationship, namely the place where a person was born.

e A NIEM type “PersonType” may have the property "EyeColor", to indicate a
characteristic of the person.

e A NIEM type “VehicleType” may have the property "Cargo”, a subpart which
represents the contents of the vehicle.

The NIEM data model does not make concrete distinctions between kinds of NIEM
properties. All NIEM properties are represented as XML Schema elements and attributes
in an XML Schema type, regardless of how the property is used in the NIEM type.
However, naming conventions for a NIEM property can provide semantic information on
how NIEM types use the property. The use of naming conventions in naming properties
is discussed in more detail in the NIEM NDR.

The relationship between a NIEM property and a NIEM type may be semantically strong,
such as the birth location of a person, or semantically weak, with its exact meaning left
unstated. In NIEM, the property involved in the semantically weak relationship is
commonly referred to as a container element.

The name of the container element is usually based on the NIEM type that defines it. The
appearance of a container element within a NIEM type carries no additional semantics
about the relationship between the property and the containing type. Use of container
elements indicate only that there is a relationship, but does not provide any semantics for
interpreting that relationship.

319
320
321
322
323
324
325

326
327
328
329
330
331
332
333

334
335
336
337
338
339

340

341
342
343
344

345

346
347
348
349
350
351
352
353
354
355
356

357

358
359

For example, a NIEM container element nc:Person would be associated with the
NIEM type nc: PersonType. The use of the NIEM container element nc: Person in
a containing NIEM type indicates that a person has some association with the instances of
the containing NIEM type. But because the nc : Person container element is used, there
is no additional meaning about the association of the person and the instance containing
it. While there is a person associated with the instance, nothing is known about the
relationship except its existence.

The use of the Person container element is in contrast to a NIEM property named
nc:AssessmentPerson, also of NIEM type nc:PersonType. When the NIEM
property nc:AssessmentPerson is contained within an instance of a NIEM type, it
is clear that the person referenced by this property was responsible for an assessment of
some type, relevant to the exchange being modeled. The more descriptive name,
nc:AssessmentPerson, gives more information about the relationship of the person
with the containing instance, as compared to the semantic-free implications associated
with less descriptive name of the container element nc: Person.

Finally, because of the syntax provided by XML Schema, there are two representations of
NIEM properties that are included in a NIEM type: content elements and reference
elements. A content element is an XML element that contains its value inline. A
reference element is an XML element that refers to an XML construct outside the
containing XML fragment rather than inline. Examples of these two alternate
representations appear in the next section.

4.3 NIEM 2.0 Conformant Namespaces

A NIEM-conformant namespace is associated with an XML Schema that obeys all rules
specified in the NIEM NDR. NIEM types and properties are associated with NIEM-
conformant namespaces. The standard NIEM-conformant namespaces are assigned
standard namespace prefixes.

In NIEM 2.0, there are three namespace prefixes associated with the NIEM Core:

e i — bound to the appinfo namespace. The appinfo namespace contains
components which provide additional semantics and syntactic guidelines for
components built by NIEM schemas.

e s — bound to the structures namespace. The structures namespace contains
structures for organizing NIEM components.

e nc - bound to the NIEM Core namespace. The NIEM Core namespace contains
the universal and common components used by NIEM domains. Components in
this namespace are marked with metadata to distinguish universal components
(used by all or nearly all of the NIEM domains) from common components (used
by two or more NIEM domains.)

In NIEM 2.0, there are seven domains. Their standard namespaces prefixes are:

e em - Emergency Management
e infra - Infrastructure Protection (in DHS)

360
361
362
363
364

365
366
367
368

369
370
371
372
373

374
375
376
377
378

379
380

381
382
383
384
385
386

387

388
389
390
391

392

393
394

395
396
397
398

e im - Immigration (in DHS)

e intel - Intelligence

e it - International Trade (in DHS)
e j —Justice

e scr — Person Screening

NIEM 2.0 includes a number of code table schemas with their own namespace prefixes.
These schemas contain the type definitions and code values for NIEM elements that are
enumerated types. The complete list of code table schema namespace prefixes and
descriptions of the code table schemas appears in Appendix C.

Finally, NIEM currently includes the schemas for several external standards related to
emergency management and geospatial information exchanges. NIEM profiles these
schemas for use in IEPDs through adapter types (discussed in Section 6.3). The non-
conforming external standard schemas are contained in the NIEM reference schema set
within a special subdirectory labeled external.

For the emergency management standards, NIEM provides two schemas that contain
adapter types for two standard Emergency Management messages. The adapter types in
these schemas wrap components from the standard Common Alerting Protocol and
Distribution Element schemas contained in the external subdirectory. The namespace
prefixes and subdirectory labels for these are:

e edxl-cap (where cap = Common Alerting Protocol)
e cdx1-de (where de = Distribution Element)

For the geospatial external standards, NIEM provides a single schema in the geospatial
subdirectory that contains a large number of adapter types for geospatial components
used from external non-conformant schemas in the externa1 subdirectory. Within the
external Ssubdirectory there are 68 geospatial external standard schemas that are
partitioned into 18 namespaces. The namespace prefix for the schema that contains the
geospatial adapter types is:

e geo — Geospatial

NIEM types and properties from any of the namespaces in NIEM 2.0 may be used in
developing custom types and properties for use in an IEPD. Additional namespaces may
be added to future releases of NIEM, and assigned standard namespace prefixes.
Appendix B provides a complete directory tree for the NIEM 2.0 release.

4.4 NIEM Type and Properties Example

An example serves to clarify the rules governing the interaction of NIEM types and
properties, and how those rules are represented in NIEM-conformant XML Schema.

Note that in these and other examples in this paper, namespace prefixes are used in the
schema fragments, but not in the instance fragments. The default namespace is assigned
to the schema or instance being defined. This approach to use of namespace prefixes and
default namespace is not mandated by NIEM — the IEPD developer may use namespaces

10

399
400

401
402
403

404

T e o o S S S L S L e D o e e ey
PR R R R R RR R ERO0000
LN OO0~IOYUTR WNIR OISO

424
425
426

427
428
429
430

and namespace prefixes as appropriate for the specific tasks in keeping with any rules for
their use specified in the NIEM NDR.

In the following XML Schema fragment from the NIEM Core schema, we see a portion
of the definition of the NIEM Core Type “PersonType” and its contained property
“PersonName”.

XML Schema fragment for nc:PersonType

<xsd:schema xmlns:s="http://niem.gov/niem/structures/2.0"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:nc="http://niem.gov/niem/niem-core/2.0"
targetNamespace="http://niem.gov/niem/niem-core/2.0"

>

<xsd:complexType name="PersonType">
<xsd:complexContent>
<xsd:extension base="s:ComplexObjectType">
<xsd:sequence>
<xsd:element ref="nc:PersonAgeMeasure" minOccurs="0"
maxOccurs="unbounded" />
<xsd:element ref="nc:PersonBirthDate" minOccurs="0"
maxOccurs="unbounded" />
<xsd:element ref="nc:PersonName" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

The association of the “PersonName” NIEM property with the “PersonType” NIEM type
is represented by the existence of an XML Schema complex type PersonType which
contains an XML Schema element PersonName.

The PersonName element is a reference to an existing element, rather than defined
inline. So how is that existing element defined? That element is an XML Schema
complex type, PersonNameType, Which happens to be the XML Schema
representation of the NIEM type “PersonNameType”.

11

431
432

433

460
461
462
463
464
465

466
467
468

469

NN N
~OoOO1RWNFRO

478
479
480
481
482

Here is the XML Schema fragment that shows the definition of the “PersonNameType”
property:

XML Schema fragment for nc:PersonNameType

<xsd:schema xmlns:s="http://niem.gov/niem/structures/2.0"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:nc="http://niem.gov/niem/niem-core/2.0"
targetNamespace="http://niem.gov/niem/niem-core/2.0"

>

<xsd:complexType name="PersonNameType">
<xsd:complexContent>
<xsd:extension base="s:ComplexObjectType">
<xsd:sequence>
<xsd:element ref="nc:PersonNamePrefixText" minOccurs="0"
maxOccurs="unbounded" />
<xsd:element ref="nc:PersonGivenName" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="nc:PersonMiddleName" minOccurs="0"
maxOccurs="unbounded" />
<xsd:element ref="nc:PersonSurName" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="nc:PersonNameSuffixText" minOccurs="0"
maxOccurs="unbounded" />
<xsd:element ref="nc:PersonMaidenName" minOccurs="0"
maxOccurs="unbounded" />
<xsd:element ref="nc:PersonFullName" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
<xsd:attribute ref="nc:personNameCommentText" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

As we can see, the “PersonNameType” NIEM type itself contains NIEM properties,
represented as XML Schema elements and attributes. These contained NIEM properties
may be of NIEM complex types, or of XML Schema simple types, as in the case of a
NIEM property represented as an XML attributes. NIEM types may also have simple
content of XML Schema simple types, and not be defined in terms of other NIEM
properties at all.

Here is a fragment of an XML instance that contains an instance of the NIEM type
“PersonType”. In this fragment, the XML element name Person is an instance of the
XML Schema Type nc: PersonType:

XML instance fragment using nc:PersonType as content element

<nc:Person xmlns:nc="http://niem.gov/niem/niem-core/2.0">
<nc:PersonName>
<nc:PersonGivenName>John</nc:PersonGivenName>
<nc:PersonMiddleName>Q</nc:PersonMiddleName>
<nc:PersonSurName>Public</nc:PersonSurName>
</nc:PersonName>
<nc:PersonBirthDate>1970-01-01</nc:PersonBirthDate>
</nc:Person>

In the previous instance fragment, the XML Schema element PersonName is a content
element, because the value is an instance of the XML Schema type, PersonNameType.
By contrast, in the following fragment, the same information appears, but is represented
using a reference element, rather than a content element. As shown below,
PersonNameReference is a reference element, because the value is defined as an

12

483
484
485
486
487
488
489
490

491

QIO DDA DDDDEDN
OOOOOOOOOO©
N OO0~ UTRWN

a
o
w

504
505

506

507
508

509
510

511
512
513
514
515

516

517
518
519

520
521
522
523
524

instance of the XML Schema base type s:ReferenceType, instead of
PersonNameType. The XML instance of s:ReferenceType contains a reference
to a “PersonName” instance whose XML representation has been assigned the identifier
"A". The value pointed to by the reference element contains the same information as was
kept inline by the content element example. However, by pulling the element information
into a separate component, it is now capable of being shared by multiple NIEM
properties using reference elements, rather than being used inline exactly once by a
content element.

XML instance fragment using reference element

<nc:Person xmlns:s="http://niem.gov/niem/structures/2.0"
xmlns:nc="http://niem.gov/niem/niem-core/2.0" >
<nc:PersonNameReference s:reference="A"/>
<nc:PersonBirthDate>1970-01-01</nc:PersonBirthDate>
</nc:Person>

<nc:PersonName s:id="A" xmlns:s="http://niem.gov/niem/structures/2.0"

xmlns:nc="http://niem.gov/niem/niem-core/2.0" >
<nc:PersonGivenName>Robert</nc:PersonGivenName>
<nc:PersonSurName>Smith</nc:PersonSurName>

</nc:PersonName>

Whether to represent NIEM properties as content or reference elements is a decision
determined by the use and complexity of the information being modeled. This topic will
be discussed in more detail in Section 5.4.5.

5 Extension Techniques

There are two approaches for extending the NIEM data model for use in information
exchange schemas and documents.

e Creating new NIEM types to represent new concepts
e Adding new data to existing NIEM types, to extend existing concepts

The end result of the data model extensions is a collection of new XML Schema types
and elements. These new components will reside in either a NIEM exchange schema (if
the extensions are specific to a given exchange) or in a NIEM extension schema (if the
extensions could potentially be used by more than one exchange through XML schema
import facilities.)

5.1 Designing the Exchange Schema Document Element

As discussed in Section 3, the exchange schema defines the document element (also
referred to as the root element) of an exchange. This document element defines the top-
level structure of the IEPD instance.

The IEPD drives the design of this top-level element. Although it is called a "document
element”, this top level element need not be a traditional document, if the exchange is
better modeled with a message-passing paradigm. Since XML instances can be
document-oriented or data-oriented, the exchange document element should be designed
to support document or data-oriented exchange as appropriate.

13

525
526
527
528
529
530
531
532
533

534
535
536
537
538
539
540
541
542
543
544

545

546
547
548

549
550

551
552
553

554
555
556
557
558

559

560
561
562

563
564

In the case of document-oriented IEPDs, NIEM provides the NIEM Core Type
nc:DocumentType as a building block. By deriving types from the "DocumentType"
instances of those derived types are distinguishable as documents. In addition, the
"DocumentType™ contains a large number of NIEM properties which can be used to
describe data about the document itself (document metadata.) This collection of
properties includes properties such as "DocumentAuthor”, "DocumentCreationDate" and
so on. In domains that are document-centric, it is recommended that the document
element of the exchange derive from the NIEM "DocumentType", so as to clearly mark
the IEP as a document, and to inherit this metadata collection for marking documents.

In the case of message-oriented IEPDs, there is no NIEM 'MessageType" provided for
derivation purposes. At the time this paper was published, a standard NIEM messaging
framework was not available. That said, a typical message-style IEP might have a
message header component, followed by a message payload component containing the
actual data being exchanged. The payload might be followed by other components for
handling exceptions, providing digital signatures and so on. Regardless of how the
document element of a message-oriented IEPD exchange schema is designed, it is
recommended that any documents that appear in the payload of an IEPD message be
derived from the "DocumentType". The reason for this derivation recommendation is the
same as for document-oriented IEPDs — to mark this portion of the payload as a
document, and to reuse the collection of properties that describe NIEM documents.

5.2 Designing New NIEM Types

After reviewing the NIEM data model, users may find that the concept they wish to
represent in their information exchange does not exist in NIEM. In this case, NIEM
provides two techniques for creating new NIEM types to represent the new concept:

e composing a new NIEM type from a collection of NIEM properties,
e specializing an existing NIEM type to create a new NIEM type

The addition of a new NIEM type to the NIEM data model results in a local extension of
the NIEM data model, with a new data component. This extension is represented as the
creation of additional XML Schema types to represent the new data model components.

The new concept may be very simple to model: perhaps all that is needed is a new NIEM
type which reuses existing NIEM properties from the core data model, in a new
composition or specialization. At the other end of the spectrum, modeling a new concept
may trigger the creation of several new NIEM types and properties, all associated with
the particular information exchange.

5.2.1 NIEM Type Composition

The basic method for creating NIEM types is by composition of different parts. As
discussed earlier, the parts of a NIEM type are NIEM properties. The parts are composed
("put together™) as a sequence of NIEM properties.

In the corresponding XML Schema representation, this means the NIEM type is
represented as an XML Schema complex type. That XML Schema type is composed of

14

565
566

567
568
569
570

571

GIUTUTUTIUITITIOIUTOTOICITTIOIOTUT
0000000060C0C000 ~d~d~d~I~I~JI~I—]
OGN OO 00~IOUT LN

an ordered sequence of XML Schema elements and attributes that correspond to the
NIEM properties.

Here is a simple XML Schema fragment that shows the definition of a composite type
“MyCompositeType” with two NIEM properties, “MyName” and “MyText.” Those two
properties are instances of the NIEM type “TextType” and are not shown in the schema
fragment below.

XML Schema example of a composite type

<xsd:schema xmlns:s="http://niem.gov/niem/structures/2.0"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:exch="urn:examples.com:techniques:exchange-example"
targetNamespace="urn:examples.com: techniques:exchange-example"
>

<xsd:complexType name="MyCompositeType">
<xsd:complexContent>
<xsd:extension base="s:ComplexObjectType">
<xsd:sequence>
<xsd:element ref="exch:MyName" ... />
<xsd:element ref="exch:MyText" ... />
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

An XML instance of that new composite type would look like this:

XML Instance example of a composite type

<exch:MyComposite xmlns:exch="urn:examples.com:techniques:exchange-example" >
<exch:MyName>George P. Burdell</exch:MyName>
<exch:MyText>Some text here</exch:MyText>

</exch:MyComposite>

5.2.2 NIEM Type Specialization

Specialization is a method that creates a new NIEM type from an existing NIEM type,
called the derived NIEM type. Wikipedia (http://en.wikipedia.org/wiki/Specialization)
defines specialization as follows:

Concept B is a specialization of concept A if and only if:
e every instance of concept B is also an instance of concept A; and
e there are instances of concept A which are not instances of concept B.

For instance, 'Bird' is a specialization of 'Animal’ because every bird is an animal,
and there are animals which are not birds (dogs, for instance).

Derived NIEM types must also obey two additional rules:

e Specializations represent permanent, time-independent characteristics for an
instance. For example, it is incorrect to design a specialized type to characterize
instances of people who are National Guardsman. A person may be on activity
duty for a number of years and then discharged, at which point the person is no
longer a National Guardsman.

15

http://en.wikipedia.org/wiki/Specialization

609
610
611
612
613
614
615
616

617
618

619
620
621
622
623
624
625
626

627
628

629

[e]erlerleplerlerlerlorlerlerleriorlerlerleriorlen]
BSBEDDREDEDIROWOWWLWULWLWLWLWWW
OYUTRLWNF OO~ UTRWNIFO

e Specializations are mutually exclusive — there is no overlap between the instances
of different derived types. To put it another way, the intersection of instances of
one derived type with instances of any other derived types must be null (empty).
For example, it is incorrect to design two specialized types, one which
characterizes instances of people with black hair and one which characterizes
instances of people with brown eyes. Those people with black hair and brown
eyes would be instances of both of these specialized types, which is a violation of
this mutually exclusive rule.

Specialization in the NIEM data model is represented in XML Schema as XML Schema
complex type extension.

As mentioned above, a case is a special form of a NIEM activity and demonstrates the
correct use of specialization within the NIEM data model. The concept of a case is
modeled by the NIEM type “CaseType”. It is represented by an XML Schema complex
type in the NIEM core namespace, nc:CaseType. The fact that a case is a
specialization of an activity is represented in XML Schema by the nc:CaseType (the
representation of the concept “CaseType”) extending the nc:ActivityType (the
representation of the concept “ActivityType”) with the addition of NIEM properties
(represented as XSD Schema elements) to the definition of nc:CaseType.

Here is a XML Schema fragment that defines the specialized NIEM type “CaseType,”
based on the NIEM type “ActivityType” with additional NIEM properties added to it:

XML Schema example of a specialized type

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:nc="http://niem.gov/niem/niem-core/2.0"
targetNamespace="http://niem.gov/niem/niem-core/2.0”

>

<xsd:complexType name="CaseType">
<xsd:complexContent>
<xsd:extension base="nc:ActivityType">
<xsd:sequence>
<xsd:element ref="nc:CaseTitleText" ... />
<xsd:element ref="nc:CaseCategoryText" ... />

<xsd:element ref="nc:CaseResolutionText" ... />
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

16

647
648

[ep]e)(epleplerleropleplerler)
Q10101010101010101-
CO~OOUTRWNFROW

[e2]
al
(o]

660

661

662
663
664
665

666
667

668
669
670

671

672
673
674
675
676
677
678
679
680

681
682
683
684
685
686

An XML instance of that specialized NIEM type “CaseType” would look like this:

XML Instance example of a specialized type

<nc:Case xmlns:nc="http://niem.gov/niem/niem-core/2.0">
<!-- instances of properties associated with base nc:ActivityType -->
<nc:ActivityID>1923</nc:ActivityID>

<!-- instances of properties associated with derived type -->
<nc:CaseTitleText>Murder of Roger Ackroyd<nc:CaseTitleText>
<nc:CaseCategoryText>Whodunnit</nc:CaseCategoryText>

<nc:CaseResolutionText>Suspect everyone.</nc:CaseResolutionText>
</nc:Case>

Specialized types must be carefully designed to avoid violating the rules for being
permanent and mutually exclusive.

5.3 Adding to Existing NIEM Types

After reviewing the NIEM data model, users may find that the basic concept they need is
already part of the NIEM data model, but does not carry all the information needed for a
particular information exchange. In this case, NIEM provides two techniques for adding
to the existing concept without the overhead of adding new NIEM types,

e adding metadata to an existing NIEM type
e augmenting an existing NIEM type

With the approaches outlined in this section, the concepts in the core data model are
reused, but in a way that allows the exchange specific information to be incorporated
with the core concepts.

5.3.1 Adding Metadata

Metadata is defined loosely as “data about data”, information that describes the
information stored in a database or data model. NIEM metadata can be thought of as a
pedigree for the data, storing information about how the data was gathered, who gathered
it, when it was gathered, and so on. All of the base NIEM types in the NIEM Structures
schema contain a reference to a structure that holds optional metadata for NIEM objects.
Since the base NIEM types are the root for all NIEM types in the NIEM data model
(whether said types are provided in the data model or custom to an information
exchange), all instances of all NIEM types are capable of carrying metadata describing
the data in those instances.

NIEM metadata is represented in XML Schema as separate, reusable sets of XML
Schema fragments. The association of metadata with NIEM types is represented by
adding metadata “hooks”, or empty placeholders, to all the NIEM base types. The
representation of these metadata hooks in XML Schema is through the use of one or more
XML attributes. The value of these XML attributes is the identifier for a previously
defined set of metadata.

17

687
688
689

690
691
692
693
694
695

696
697

698

699
700
701
702

703
704
705
706
707
708

709
710
711
712

713

R R R R R AN NN
NRNNI ISR
LN OWOO~DUT

~
N
D

725
726
727
728

NIEM provides two categories of metadata:
e metadata specific to an object
e metadata specific to a relationship(link) between two objects

These two categories of metadata are implemented through the use of two XML Schema
attributes defined in the NIEM Structures schema. The XML attribute s:metadata
assigns a set of metadata specific to the object. The XML attribute s: 1inkMetadata
assigns a set of metadata specific to a relationship(link) between two objects. NIEM
types may have one or both of these types of metadata available, depending on the NIEM
base type it is derived from:

e s:ComplexObjectType (s:metadata and s:linkMetadata)
e s:ReferenceType (s:linkMetadata)
e s:AugmentationType (s:metadata)

Multiple sets of metadata, both object-specific and link-specific, depending on the NIEM
base type in use, may be applied to a NIEM type. This is handled by supplying multiple
values to the XML Schema attribute(s) in the XML schema representation of the NIEM
type.

The NIEM metadata design does not enforce the use of particular pieces of metadata —
the user is free to design metadata sets to represent his exchange and those metadata sets
can be arbitrarily complex, using all the facilities available in XML Schema. However, as
a convenience, and to encourage interoperability, a predefined set of object metadata

attributes is defined in the NIEM Core schema, using the XML Schema type
nc:MetadataType.

Here is an XML Schema fragment that shows the definition of metadata in the NIEM
structures schema type “ComplexObjectType”. It demonstrates that NIEM types
represented as extensions of the XML SchemaType s:ComplexObjectType can
optionally contain either object or link metadata or both:

XML Schema fragment demonstrating NIEM metadata hooks

<xsd:schema xmlns:s="http://niem.gov/niem/structures/2.0"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://niem.gov/niem/structures/2.0”

>

<xsd:complexType name="ComplexObjectType" abstract="true">
<xsd:attribute ref="s:id"/>
<xsd:attribute ref="s:metadata"/>
<xsd:attribute ref="s:linkMetadata"/>

</xsd:complexType>

Looking back at the PersonType example in Section 4.4, we see that the XML Schema
type nc:PersonType IS a specialization of s:ComplexObjectType. Therefore,
instances of the NIEM type “PersonType”, by virtue of inheritance from the NIEM
Structures schema type “ComplexObjectType” can have metadata attached to them
without having to compose or specialize another variant of a person.

18

http://www.w3.org/2001/XMLSchema
http://niem.gov/niem/structures/2.0

729
730

731

e e I e e S S S EN SN SN N N N N N N N
OIUT OIBADDNANDAN DNOIWWOLIMWILIMW0
N OOOIOUTRWNR, OOO~ISXTTRMWN

753
754

~
(6]
(€]

N N N N A N S S S S S T L P e
NN~~~ OO OO OOICIOIDUIIIUIUT
~OUTE LN OORNS TGN OO0

The following XML Schema fragment demonstrates the use of a metadata set for
capturing metadata about the lab that analyzed a piece of DNA evidence.

XML Schema fragment for new metadata set (DNATestingLabMetadataType)

<xsd:schema xmlns:s="http://niem.gov/niem/structures/2.0"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:nc="http://niem.gov/niem/niem-core/2.0"
xmlns:exch="urn:examples.com:techniques:exchange-example"
targetNamespace="urn:examples.com:techniques:exchange-example”
>

<xsd:element name="DNATestingLabTechnician" type="nc:PersonType" nillable="true"/>
<xsd:element name="DNATestingLab" type="nc:0OrganizationType" nillable="true"/>

<xsd:complexType name="DNATestingLabMetadataType">
<xsd:complexContent>
<xsd:extension base="s:MetadataType">
<xsd:sequence>
<xsd:element ref="exch:DNATestingLab"/>
<xsd:element ref="exch:DNATestingLabTechnician"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="DNATestingLabMetadata" type="exch:DNATestingLabMetadataType"
nillable="true"/>

The following XML instance fragment takes advantage of the metadata hooks to add
metadata describing the lab technicians analyzing some pieces of DNA evidence.

XML instance example using new metadata set

<nc:DNA s:metadata="LabAlice" xmnls="urn:examples.com:techniques:exchange-example"
xmlns:s="http://niem.gov/niem/structures/2.0"
xmlns:nc="http://niem.gov/niem/niem-core/2.0">
<nc:DNAImage>
<!-- image detail omitted -->
<nc:ImageLocation>
<nc:LocationDescriptionText>Cabinet ABC123</nc:LocationDescriptionText>
</nc:ImagelLocation>
</nc:DNAImage>
</nc:DNA>

<nc:DNA s:metadata="LabAlice" xmnls="urn:examples.com:techniques:exchange-example"
xmlns:s="http://niem.gov/niem/structures/2.0"
xmlns:nc="http://niem.gov/niem/niem-core/2.0">
<nc:DNAImage>
<!-- image detail omitted -->
<nc:ImageLocation>
<nc:LocationDescriptionText>Cabinet ABC456</nc:LocationDescriptionText>
</nc:Imagelocation>
</nc:DNAImage>
</nc:DNA>

19

http://www.w3.org/2001/XMLSchema

000000C00000000000000000 QOOO~IISINININISININININ IS~
PRRROO0000000 OOOOWOWOOOOOOWON 0O0000C0000000C0~I~
WNROORIUSTIEDOR OO ~IOUTRWONFROO ONSOCIRWNFOWO0

814

815
816
817
818
819
820
821
822
823

824
825
826

827
828

<nc:DNA s:metadata="LabBob"
xmnls="urn:examples.com:techniques:exchange-example"
xmlns:s="http://niem.gov/niem/structures/2.0"
xmlns:nc="http://niem.gov/niem/niem-core/2.0">
<nc:DNAImage>
<!-- image detail omitted -->
<nc:ImageLocation>
<nc:LocationDescriptionText>Cabinet ABC789</nc:LocationDescriptionText>
</nc:Imagelocation>
</nc:DNAImage>
</nc:DNA>

<DNATestingLabMetadata s:id="LabAlice"
xmnls="urn:examples.com:techniques:exchange-example"
xmlns:s="http://niem.gov/niem/structures/2.0"
xmlns:nc="http://niem.gov/niem/niem-core/2.0">
<nc:DNATestingLab>
<nc:0rganizationName>Dan's DNA Lab</nc:0rganizationName>
</nc:DNATestingLab>
<nc:DNATestingLabTechnician>
<nc:PersonName>
<nc:PersonFullName>Alice Smith</nc:PersonFullName>
</nc:PersonName>
</nc:DNATestingLabTechnician>
</DNATestingLabMetadata>

<DNATestingLabMetadata s:id="LabBob" xmnls="urn:examples.com:techniques:examples"
xmlns:s="http://niem.gov/niem/structures/2.0"
xmlns:nc="http://niem.gov/niem/niem-core/2.0">
<nc:DNATestingLab>
<nc:0rganizationName>Dan's DNA Lab</nc:OrganizationName>
</nc:DNATestingLab>
<nc:DNATestingLabTechnician>
<nc:PersonName>
<nc:PersonFullName>Bob Jones</nc:PersonFullName>
</nc:PersonName>
</nc:DNATestingLabTechnician>
</DNATestingLabMetadata>

5.3.2 Adding Augmentations

Augmentation of a NIEM data type allows the addition of domain- or model-specific
information to the concept embodied in the NIEM type, without creating a new NIEM
type. It would be impractical and unwieldy to include all possible domain model-specific
properties in NIEM Core schemas for general use. Instead, domain modelers need to be
able define data for their use, independently from common definitions. Furthermore, that
data needs to be applicable to the NIEM data object itself, and reusable in multiple
exchanges. The augmentation approach built into NIEM utilizes XML Schema
constructs to reuse the existing XML schema representations for the data model, by
allowing them to be augmented with the new information.

NIEM augmentations are represented in XML Schema as a collection of XML Schema
type extensions, built according to a set of rules governing the augmentation process. An
augmentation requires the creation of the following XML Schema entities:

e an XML Schema type derived from the NIEM Structures abstract base type
s:AugmentationType (i.e. an extension of this base type)

20

829
830

831
832

0000000000000000000000
DD IWWWWWLWW
NI OO0O~NOUTIRW

844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

e an XML Schema element whose name has the suffix “Augmentation” and is
defined to belong in the substitution group s : Augmentation.

The XML Schema fragments from the Structures schema that support augmentation are:

XML Schema fragment containing augmentation support

<xsd:schema xmlns:s="http://niem.gov/niem/structures/2.0"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://niem.gov/niem/structures/2.0"

>

<xsd:complexType name="AugmentationType" abstract="true">
<xsd:attribute ref="s:metadata"/>
<xsd:attribute ref="s:linkMetadata"/>
</xsd:complexType>

<xsd:element name="Augmentation" type="s:AugmentationType"/>

Note that the “Augmentation” substitution group, s:Augmentation, provides a base
for element substitution. The name of this substitution group provides meaningful
information since it defines elements using this substitution group as being
augmentations.

Augmentations generally contain domain-specific information, and thus, are usually
associated with the NIEM domains and domain specific IEPDs, not with the NIEM Core.
While augmentation components (elements and their associated types) are considered
extensions to the NIEM model and are contained in NIEM, the augmentation components
are applied to (i.e. extend) the types they are designed to supplement only within an IEPD
schema (not within NIEM itself). This subtle restriction is one reason augmentations are
reusable in combinations.

A simple example calling for an augmentation is an IEPD that exchanges information
involving commercial vehicles. The augmentation contains additional information about
the commercial vehicle’s history with the company that owns it. This augmentation is
associated with the base type nc: CommercialVehicleType, through the use of the
appinfo annotation. Since this is an extension to the NIEM model for a particular
domain, the new augmentation container definitions appear within an IEPD extension
schema, where it could be reused by other IEPDs as needed.

21

http://www.w3.org/2001/XMLSchema

(0]
(@)
~

IEPD extension schema fragment describing a new augmentation type

<xsd:schema xmlns:s="http://niem.gov/niem/structures/2.0"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:nc="http://niem.gov/niem/niem-core/2.0"
xmlns:ext="urn:example.com:techniques:extension-example"
targetNamespace="urn:example.com: techniques:extension-example”
>

<xsd:complexType name="CommercialVehicleAugmentationType">
<xsd:complexContent>
<xsd:extension base="s:AugmentationType">
<xsd:sequence>
<xsd:element ref="ext:VehicleCompanyVIN"/>
<xsd:element ref="ext:VehicleOwningCompany"/>
<xsd:element ref="ext:VehicleCompanyPurchaseDate"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

<xsd:element name="CommercialVehicleAugmentation"
type="ext:CommercialVehicleAugmentationType"
substitutionGroup="s:Augmentation">
<xsd:annotation>
<xsd:appinfo>
<i:appliesTo
i:namespace="http://niem.gov/niem/niem-core/2.0"
name="CommercialVehicleType"/>
</xsd:appinfo>
</xsd:annotation>
</xsd:element>

<xsd:element name="VehicleCompanyVIN"
<xsd:element name="VehicleOwningCompany" . . . />
<xsd:element name="VehicleCompanyPurchaseDate" . . . />

0000000000000 000000C0000000CO000000CO0000COCO00000OCO0000000C00000
OOOLOOOO O 00000000 000000000 0O~~~ YOO
~OUTRWNF OO0~ UTRGWNIF OO O0~OY TR WNF OWWOoO~IOYUT

898 The use of this augmentation container appears within types defined in the IEPD
899 exchange schema:

(o]
o
o

IEPD exchange schema fragment describing a new augmentation type

<xsd:schema xmlns:s="http://niem.gov/niem/structures/2.0"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:nc="http://niem.gov/niem/niem-core/2.0"
xmlns:ext="urn:example.com:techniques:extension-example"
xmlns:exch="urn:example.com:techniques:exchange-example"
targetNamespace="urn:example.com:techniques:exchange-example”
>

<xsd:complexType name="MyCommercialVehicleType">
<xsd:complexContent>
<xsd:extension base="nc:CommercialVehicleType">
<xsd:sequence>
<xsd:element ref="ext:CommercialVehicleAugmentation"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="MyCommercialVehicle"
type="exch:MyCommercialVehicleType"
substitutionGroup="nc:CommercialVehicle" />

LOOOOOOOOOOOOODOODOOOOOO
NN PR R R R RO 00000000
N OO0~ UTRWNIF OO0~ OUTRWNF-

22

923
924

925

OO OLOLOLOLOLOLOLOOLOOOO©O
BB 0IOWWLW LU LILININININ
OO0~ UTRWNIF OO0~

942

943
944
945
946
947

948
949

950
951
952

953
954
955

956
957
958
959
960
961
962

963
964
965
966

An IEPD XML instance fragment that demonstrates the use of this augmentation would
look like this:

IEPD instance example using new augmentation type

<exch:MyCommercialVehicle
xmlns:nc="http://niem.gov/niem/niem-core/2.0"
xmlns:ext="urn:example.com:techniques:extension-example"
xmlns:exch="urn:example.com: techniques:exchange-example"
>
<!-- associated with base type -->
<nc:VehicleBrand>Chevrolet</nc:VehicleBrand>
<nc:VehicleDoorQuantity>6</nc:VehicleDoorQuantity>
<nc:VehicleAxleQuantity>3</nc:VehicleAxleQuantity>

<!-- associated with augmentation -->

<ext:CommercialVehicleAugmentation>
<ext:VehicleCompanyVIN> . . . </ext:VehicleCompanyVIN>
<ext:VehicleOwningCompany> . . . </ext:VehicleOwningCompany>
<ext:VehicleCompanyPurchaseDate> . . . </ext:VehicleCompanyPurchaseDate>

</ext:CommercialVehicleAugmentation>
</exch:MyCommercialVehicle>

5.3.3 Using Element Substitution

NIEM uses several techniques from XML Schema to allow as-needed element
substitutions for pre-existing NIEM properties and into pre-existing NIEM types.
Element substitution techniques allow the substitution of new XML Schema elements,
representing derived NIEM properties that can be used where the parent properties are
expected.

There are three XML Schema techniques that support the NIEM use of element
substitutions:

e use of substitution groups
e creation of abstract, type-less elements, and
e use of abstract elements in reference schemas.

Substitution groups allow elements to be derived from other elements. The attribute
“substitutionGroup” appears on element definitions and indicates an element for
which the element being defined may be substituted.

An abstract, type-less element represents a specific NIEM concept which can have
multiple representations. Because the element has no type, it can carry any content,
meaning that any kind of representation may be used, without restriction. However, only
concrete elements may be used in XML instances, not abstract type-less elements which
have no restriction on content. Therefore, the use of a substitution group, in conjunction
with an abstract element, allows concrete elements to be substituted for the abstract
element in XML instances.

Element substitution techniques are often used to implement managed lists (a/k/a code
lists). This allows for the substitution of different code sets to represent the same
enumerated concept. By providing a substitutable component in the schema, the schema
designer has provided a placeholder for information that the IEPD creator must supply.

23

967
968

969
970
971
972
973
974
975

976

[{e]
~
~

OO O OOOOOOOOOOODOOLOOOOOOOO©O
OO O OOOOOOLOOOOO 000000000000 00000000~~~
GNP OOOO~NOY TR UWNF OO0~ UTRWNIFOW00

o

This defers the decision on which codes to use to a particular information exchange,

rather than setting it in the schema.
For example, in the NIEM Core namespace, there is a NIEM

nc:JurisdictionType, Which contains references to geopolitical areas (country,
state, county). An IEPD using this type may need the freedom to decide how to represent
those references, as either text, or with an appropriate managed list of codes.
Accordingly, the country, county and state references are setup as abstract, type-less
components, to represent the geopolitical references conceptually, while not restricting

the representation of those references.
This type is defined in the Core schema as follows:

XML schema example demonstrating element substitution in reference schema

<xsd:schema xmlns:s="http://niem.gov/niem/structures/2.0"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:nc="http://niem.gov/niem/niem-core/2.0"
targetNamespace="http://niem.gov/niem/niem-core/2.0"

>

<xsd:complexType name="JurisdictionType">
<xsd:complexContent>
<xsd:extension base="s:ComplexObjectType">
<xsd:sequence>
<xsd:element ref="nc:LocationCityName"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="nc:LocationCountry"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="nc:LocationCounty"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="nc:LocationState"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="LocationCountry" abstract="true"/>
<xsd:element name="LocationCounty" abstract="true"/>
<xsd:element name="LocationState" abstract="true"/>

24

1004
1005
1006

1007

OOOOO0OOOOOOOO0O0
R NS e e e e e e e e e
NP OO0~ U WNI OO0

1023
1024
1025

1026

o e
OO0000000 OOOOO00OD OOO0O0OOOOOOOOOOO00O

oCOOYUI0TIUIVI0TI0TI0T G100 DIARBEDRD BEDIOWWOLWULWUIWLWULWULWULWWLWNININ
FPOWOOO~NOUTIRW NFPOOOONOOIR CONFOWOWOO~NOYUTRWNIF OO0

For those IEPDs that wish to use a textual description of the geopolitical area, rather than
a standard code table, an appropriate element is defined (LocationCountryName) in
the Core namespace and placed in the substitution group nc: LocationCountry:

XML schema example demonstrating element substitution with substitution group (1)

<xsd:schema xmlns:s="http://niem.gov/niem/structures/2.0"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:i="http://niem.gov/niem/appinfo/2.0"
xmlns:nc="http://niem.gov/niem/niem-core/2.0"
targetNamespace="http://niem.gov/niem/niem-core/2.0"

>

<xsd:element name="LocationCountryName" type="nc:ProperNameTextType"
substitutionGroup="nc:LocationCountry" nillable="true">
<xsd:annotation>
<xsd:appinfo>
<i:Base i:name="LocationCountry"/>
</xsd:appinfo>
</xsd:annotation>
</xsd:element>

For those IEPDs that wish to use one of several managed lists available in NIEM for
country codes, other (enumerated) elements are defined in the Core namespace and
placed in the substitution group LocationCountry:

XML schema example demonstrating element substitution with substitution group (2)

<xsd:schema xmlns:s="http://niem.gov/niem/structures/2.0"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:i="http://niem.gov/niem/appinfo/2.0"
xmlns:nc="http://niem.gov/niem/niem-core/2.0"

xmlns:fips 10-4="http://niem.gov/niem/fips 10-4/2.0"
xmlns:iso_3166="http://niem.gov/niem/iso_3166/2.0"
targetNamespace="http://niem.gov/niem/niem-core/2.0"

>

<xsd:element name="LocationCountryFIPS10-4Code" type="fips 10-4:CountryCodeType"
substitutionGroup="nc:LocationCountry" nillable="true">
<xsd:annotation>
<xsd:appinfo>
<i:Base i:name="LocationCountry"/>
</xsd:appinfo>
</xsd:annotation>
</xsd:element>

<xsd:element name="LocationCountryISO3166Alpha2Code"
type="iso 3166:CountryAlpha2CodeType" substitutionGroup="nc:LocationCountry"
nillable="true">
<xsd:annotation>
<xsd:appinfo>
<i:Base i:name="LocationCountry"/>
</xsd:appinfo>
</xsd:annotation>
</xsd:element>

<xsd:element name="LocationCountryISO3166Alpha3Code"
type="iso 3166:CountryAlpha3CodeType" substitutionGroup="nc:LocationCountry"
nillable="true">
<xsd:annotation>
<xsd:appinfo>
<i:Base i:name="LocationCountry"/>
</xsd:appinfo>
</xsd:annotation>
</xsd:element>

25

OCO0000000
AHDHOHONNS)
OCORDCIRWN

1071
1072

1073

PRRRRERRO00000 00000000000 00000000O
CO0000OBOOOOO OOBOOOCOCOCOGCICOCO~I~I~I~I~I~I
SCIEORROOR~IOUIR GNFEOOOSOTRWRNIEO0O~IOUTS

1107
1108
1109
1110
1111
1112
1113

1114
1115

<xsd:element name="LocationCountryISO31l66NumericCode"
type="iso 3166:CountryNumericCodeType" substitutionGroup="nc:LocationCountry"
nillable="true">
<xsd:annotation>
<xsd:appinfo>
<i:Base i:name="LocationCountry"/>
</xsd:appinfo>
</xsd:annotation>
</xsd:element>

As a result, an IEPD is allowed to use any of the following representations for the United
States in its exchange documents:

XML instance examples demonstrating different country representations

<!-- as text -->
<nc:Jurisdiction xmlns:nc="http://niem.gov/niem/niem-core/2.0" >

<nc:LocationCountryName>The United States</nc:LocationCountryName>
</nc:Jurisdiction>

<!-- as a FIPS10-4 code -->
<nc:Jurisdiction xmlns:nc="http://niem.gov/niem/niem-core/2.0" >

<nc:LocationCountryFIPS10-4Code>US</nc:LocationCountryFIPS10-4Code>
</nc:Jurisdiction>

<!-- as an ISO1l366 2 letter code -->
<nc:Jurisdiction xmlns:nc="http://niem.gov/niem/niem-core/2.0">

<nc:LocationCountryIS03166Alpha2Code>US</nc:LocationCountryIS03166Alpha2Code>
</nc:Jurisdiction>

<!-- as an ISO1366 3 letter code -->
<nc:Jurisdiction xmlns:nc="http://niem.gov/niem/niem-core/2.0">

<nc:LocationCountryIS03166Alpha3Code>USA</nc:LocationCountryIS03166Alpha3Code>
</nc:Jurisdiction>

<!-- as an ISO01366 numeric code -->
<nc:Jurisdiction xmlns:nc="http://niem.gov/niem/niem-core/2.0">

<nc:LocationCountryIS03166NumericCode>840</nc:LocationCountryIS03166NumericCode>

</nc:Jurisdiction>

In addition, if an IEPD needs to use yet another managed list for countries not in NIEM,
based on another code standard, it is free to do so. For example, suppose the exchange is
limited to contain information about jurisdictions in South American countries and
should use the 2-letter 1ISO3166 country codes for South America. In this case, the IEPD
could create its own type for that managed list, as well as an element of that type. Then it
can define that element (LocationSouthAmericaCountryCode) as a member of
the nc:LocationCountryIS03166Alpha2Code substitution group.

Note that the substitution group need not be an abstract type — in this case, we are
restricting a known concrete type, and using it in the substitution group.

26

1116

-
-
-
\‘

I B e B N
[N NN NSNS
NININININININI =
OUTRWNIFROWO0

1127
1128
1129
1130

1131
1132
1133
1134

1135

1136
1137
1138

1139

1140
1141
1142
1143
1144
1145

1146

1147
1148
1149
1150
1151

1152

1153
1154

The relevant fragment of this local managed list schema could look like this:

XML schema example demonstrating element substitution for concrete types

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:nc="http://niem.gov/niem/niem-core/2.0"
xmlns:exch="urn:example.com: techniques:exchange-example”
targetNamespace="urn: example.com:techniques:exchange-example”
>

<xsd:element name="LocationSouthAmericaCountryCode"
type="exch:SouthAmericaCountryCodeType"
substitutionGroup="nc:LocationCountryISO3166Alpha2Code" nillable="true"/>

A schema containing the type definition for this local managed list schema would be
included in the IEPD for this information exchange. As a result, IEP instances may use
exch:LocationSouthAmericaCountryCode anywhere that the NIEM element
iso 3166:LocationCountryISO3166Alpha2Code isexpected.

It is worth pointing out in this example that an IEPD developer could also subset just the
South American country codes (either manually or using the Schema Subset Generation
Tool). However, the use of a named substitution group makes explicit the concept that
South American country codes should be used and no others.

5.4 Choosing an Extension Technique

This section discusses some decision points for selecting an appropriate NIEM extension
technique, and offers some advice on which extension technique is appropriate for some
common scenarios.

5.4.1 Create New NIEM Types or Add to Existing Types?

Creation of new NIEM types through specialization or composition creates a new type of
data object. It is not appropriate to create a NIEM type just to define additional
properties of the base type, as that would hinder reuse. When new properties must be
added to a base type, use the augmentation approach rather than creating a new NIEM
type. Otherwise, when required and appropriate, use specialization or composition to
create the new NIEM type.

5.4.2 NIEM Type Composition or Specialization?

Creation of new NIEM types with the composition technique allows for new concepts to
be created out of smaller, possibly unrelated, building blocks. Creation of new types with
the specialization technique allows refinement of an existing concept. Specialization
allows dynamic type substitution within an instance. An element of the new derived type
can be used anywhere an element of the base class was expected.

5.4.3 NIEM Type Specialization or Augmentation?

Specialized types must be carefully designed to adhere to the rules for types being
permanent and mutually exclusive. In many cases, using augmentations or roles (as will

27

1155
1156

1157

1158
1159
1160
1161
1162
1163

1164

1165
1166
1167
1168
1169

1170
1171
1172
1173
1174
1175

1176
1177
1178
1179
1180

1181
1182
1183
1184
1185

1186

1187
1188
1189

1190

1191
1192
1193

be discussed in Section 6) are good alternatives when the rules for specialized types
cannot be satisfied.

5.4.4 Augmentation or Metadata?

The sort of information that is to be added to the domain model determines whether to
use augmentation or metadata. If the additional information describes characteristics of
the data itself, such as who gathered the data, when it was gathered, then a metadata
block should be added. Metadata blocks should be used to contain only data about the
data. Otherwise, an augmentation container should be used to add the extra information,
which represents data about objects and relationships, not data about the data itself.

5.4.5 Content or Reference Elements?

The choice of content or reference elements to represent NIEM properties depends on the
information exchange being modeled. For example, a NIEM property representing a birth
date would probably best be represented as a content element. Even though lots of
people could have the same birth date, and the date could be used for many purposes, it is
generally easier to just use copies of the date, when it is used in multiple places.

By comparison, a NIEM property that represents a person will often take the form of a
reference element. As the definition of a person may be complicated, it makes little sense
to copy its value when it is needed in multiple places. In many cases, the person may
exist outside its use in the NIEM property and may appear in several other NIEM
properties, within other NIEM types. Therefore, it may make sense for the person to be a
standalone entity that can be reused through properties represented as reference elements.

In general, when the data is simple, or will only be used in one particular context or
property, a content element representation is a good choice. If the data is complex, or is
likely to appear in multiple contexts, a reference element representation should be used.
The large, complex properties in the NIEM Core tend to use reference elements, while
the small, simpler properties in NIEM tend to use content elements.

In many cases, an IEPD developer must decide whether a NIEM property can be used
either as a reference or a content element. However, not all properties have both
representations. There are some NIEM properties which are constrained to be used as
reference elements only, whereas other NIEM properties are constrained to be used as
content elements only.

6 Standard NIEM Extensions

In this section, we cover three common NIEM extensions that practitioners may use in
their information exchanges. These extensions are common enough that there are special
structures in NIEM to facilitate their addition.

6.1 Roles

A role represents a particular context or activity for a data object. A role may be specific
to time, incident, employment, or other aspects of an activity or context. The object to
which the role applies is called the base object.

28

1194
1195
1196
1197
1198

1199
1200
1201
1202
1203
1204
1205
1206

1207
1208
1209
1210
1211
1212

1213
1214
1215
1216
1217
1218

1219
1220
1221

1222
1223
1224
1225
1226
1227

We do not want to create NIEM role types for every possible use of a particular NIEM
type. Instead, we create them as the situation warrants their use. Where the role has
specific data associated with it, and the data has its own life cycle, we create a new NIEM
type to capture that data. When the role has no data specific to the context or activity tied
to the base object, no new NIEM type needs to be created to represent the role.

For example, one person might pick up an object, like a tire iron, and hit another person
with it. In this case, the tire iron will take on the role of “Weapon” the wielder of the tire
iron the role of “CriminalSuspect”, and the person hit with the tire iron the role of
"Victim". On the other hand, if a person picks up the tire iron and steals it, rather than
hitting someone with it, the tire iron will take on a different role. Now the role of the tire
iron is "StolenProperty” and the person who owned the tire iron is assigned the role of
“Victim”. In these situations, where the role has specific data associated with it, and the
data has its own life cycle, we create a new NIEM type.

In other situations, a role may or may not have data associated with it. For example, a
vehicle may be used as a getaway car from a robbery. If we only know that a robbery
had a getaway car associated with it, then we could define a “RobberyType” which has a
property “GetawayCar” that is of “VehicleType”. There is no need to create a new
NIEM type to represent the getaway car in the robbery, so long as the existing NIEM
type “VehicleType” contains all the necessary information properties.

But now, suppose we want to record information about the use of the getaway car (e.g.
driver, violations, max speed, and origination point), expanding the data we gather about
the robbery. We would want to extend the data model to create a new NIEM role type to
store that information about the use of the vehicle in that activity, “RoleOfVehicle”. To
do so, we define “RobberyType” with a property “GetawayCar” that is of this new NIEM
role type “RoleOfVehicle.”

Any single data object instance may have multiple roles for a given context or activity.
For example, a single person may take the role of "ArrestingOfficial”, "Victim", and
"Witness" in the same instance.

In XML Schema, a new role is represented as a XML Schema complex type. The type
should contain a particular "RoleOf<BaseObject>" XML element. This element
represents the base object to which this role applies. Several “RoleOf<BaseObject>"
properties are provided in the NIEM data model, but others may be added as needed. The
XML Schema type also includes any other elements representing the other data
associated with the role.

29

1228
1229

NONINININININININININININD
NN N IYTIN IOV IOV IV TN TN TN TN TN
NI OOOIDTTRWNFO

1243
1244
1245

1246
1247

PONININININY + NININIRINININOND
OXDUITICIVT UITICICICIOIS S
ROO0ON® CIRWRIFROWO0

1262
1263

1264

1265
1266
1267

1268

1269
1270
1271
1272

1273

Here is an example describing the role type representing a weapon:

XML Schema fragment for a weapon, a role of an object.

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:nc="http://niem.gov/niem/niem-core/2.0"
targetNamespace="http://niem.gov/niem/niem-core/2.0”

>

<xsd:complexType name="WeaponType">
<xsd:sequence>
<xsd:element ref="nc:RoleOfItemReference" ... />
<xsd:element ref="nc:WeaponUserReference" ... />
<xsd:element ref="nc:WeaponInvolvedInActivityReference" .../>
<xsd:element ref="nc:WeaponUsageText" ... />
</xsd:sequence>
</xsd:complexType>

The element "nc:RoleOfItemReference” refers to the object used as a weapon. In
a corresponding XML instance, the value of that element is a reference to the tire iron
that was used as a weapon:

XML instance example of a weapon, a role of an object

<nc:Property s:id="ExhibitA" xmlns:s="http://niem.gov/niem/structures/2.0"
xmlns:nc="http://niem.gov/niem/niem-core/2.0">

<nc:PropertyDescriptionText>Tire iron</nc:PropertyDescriptionText>
</nc:Property>

<nc:Person s:id="TMD051395" xmlns:s="http://niem.gov/niem/structures/2.0"
xmlns:nc="http://niem.gov/niem/niem-core/2.0">

<nc:PersonFullName>Rod Rage</nc:PersonFullName>
</nc:Person>

<nc:Weapon xmlns:s="http://niem.gov/niem/structures/2.0"
xmlns:nc="http://niem.gov/niem/niem-core/2.0">
<nc:RoleOfItemReference s:ref="ExhibitA"/>
<nc:WeaponUserReference s:ref="RR051395"/>
<nc:WeaponUsageText>Swung like a club</nc:WeaponUsageText>
</nc:Weapon>

This represents a weapon, which is a role taken by object "ExhibitA", the tire iron; and
that weapon was used by person "RR051395” to commit the crime.

6.2 Associations

An association represents a specific relationship between objects. Associations are used
when a simple NIEM property is insufficient to model the relationship clearly and when
properties of the relationship exist that are not attributable to the objects being related.

For example, a parent-child relationship could be represented as simple properties:

The parent object has a "child" property. The value of the property is the child of
the parent.

The child object has a "parent” property. The value of the property is the parent
of the child.

These two options create concerns:

30

1274
1275
1276
1277

1278
1279
1280
1281

1282

1283
1284

1285
1286
1287
1288

1289

-
N
(o}
o

LILILILILILILILIUWILILILWILILILINININININININININ
PRRRROO0O00O0O0OOOOOOOOOOOO0
B WNIFOORSTIHE ORI OOR~ID TN

1315

e For a given relationship, which method do we use? Do we link from the child, or
from the parent, or both?

o If these are represented as content elements, what about the circular reference?

e Where do we put additional information about the relationship?

To resolve these issues, we create an association type. An association type is a NIEM
type that represents the relationship between the parent and the child, and which captures
the additional information about the relationship, not the objects involved in the
relationship.

There are two types of properties in an association type

e Characteristics, describing the context and particulars of the relationship
e Participants, describing the objects involved in the relationship.

In XML Schema, type composition is used to create the XML Schema complex type for
an association. The new NIEM association type contains reference elements that refer to
the objects (participants) it associates. Characteristics of the relationship should be
maintained in the NIEM association type, not in the objects it associates.

For example, here is a possible marriage association between two people:

XML schema fragment showing a marriage association

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:nc="http://niem.gov/niem/niem-core/2.0"
xmlns:i="http://niem.gov/niem/appinfo/2.0"
xmlns:exch="urn:example.com: techniques:exchange-example”
targetNamespace="urn:example.com:techniques:exchange-example”
>

<xsd:complexType name="MarriageAssociationType">
<xsd:sequence>
<xsd:element ref="exch:SpouseReference" minOccurs="2" maxOccurs="2" />
<xsd:element name="nc:MarriageDate" type="nc:DateType"/>
</xsd:sequence>
</xsd:complexType>

<xsd:element name="SpouseReference" type="s:ReferenceType">
<xsd:annotation>
<xsd:appinfo>
<i:ReferenceTarget 1i:name="nc:PersonType"/>
</xsd:appinfo>
</xsd:annotation>
</xsd:element>

<xsd:element name="MarriageAssociation" type="exch:MarriageAssociationType"
nillable="true"/>

And here is an instance of that marriage association:

31

1316 XML instance fragment showing a marriage association

<nc:Person s:id="GPB" xmlns:s="http://niem.gov/niem/structures/2.0"
xmlns:nc="http://niem.gov/niem/niem-core/2.0" >
<nc:PersonName>
<nc:PersonFullName>George P. Burdell</nc:PersonFullName>
</nc:PersonName>
</nc:Person>

<nc:Person s:id="GZB" xmlns:s="http://niem.gov/niem/structures/2.0"
xmlns:nc="http://niem.gov/niem/niem-core/2.0" >
<nc:PersonName>
<nc:PersonFullName>Georgia Z. Burdell</nc:PersonFullName>
</nc:PersonName>
</nc:Person>

<exch:MarriageAssociation xmlns:s="http://niem.gov/niem/structures/2.0"
xmlns:exch="urn:example.com:techniques:exchange-example”>
<exch:SpouseReference s:ref="GPB" />
<exch:SpouseReference s:ref="GZP" />
<exch:MarriageDate>1989-04-01</exch:MarriageDate>
</exch:MarriageAssociation>

GIMIMICIGLINININININIRIRININIRIS =
S TR R OOR~IO U LN OO0~

1337 Association types may be reused in multiple contexts — there is no need to define a new
1338 association type for a particular association, if an existing type represents the relationship
1339 accurately. For example, the Core namespace contains an association type
1340 nc:PersonLocationAssociationType, Which is used in the following
1341 associations in the NIEM Core:

1342 XML schema fragment showing shared association types
1343 <xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

1344 xmlns:nc="http://niem.gov/niem/niem-core/2.0"

:.345 targetNamespace="http://niem.gov/niem/niem-core/2.0”

>

<xsd:element name="LocationNeighboringPersonAssociation"
type="nc:PersonLocationAssociationType" nillable="true"/>

<xsd:element name="PersonCurrentLocationAssociation"
type="nc:PersonLocationAssociationType" nillable="true"/>

<xsd:element name="PersonDetainmentLocationAssociation"
type="nc:PersonLocationAssociationType" nillable="true"/>

<xsd:element name="PersonEmploymentLocationAssociation"
type="nc:PersonLocationAssociationType" nillable="true"/>

<xsd:element name="PersonKnownPreviousLocationAssociation"
type="nc:PersonLocationAssociationType" nillable="true"/>

<xsd:element name="PersonlLastSeenLocationAssociation"
type="nc:PersonLocationAssociationType" nillable="true"/>

<xsd:element name="PersonlLocationAssociation"
type="nc:PersonLocationAssociationType" nillable="true"/>

SODOOHHOHUNITICICICITICICICICIS S BN
NDTIRCRIR OO OID GRG0 00~

1368 Associations should be created between objects only if the objects in the relationship
1369 meet the following criteria:

1370 e The related objects are peers, meaning one is not logically a subpart of the other.
1371 Peers have their own set of characteristic properties independently of one another.

32

1372
1373
1374
1375

1376

1377
1378
1379
1380
1381

1382
1383
1384
1385
1386
1387
1388

1389
1390
1391
1392

1393
1394
1395

1396
1397
1398

1399
1400
1401
1402

e Objects can exist outside of the relationship with another object. In other words,
none of the objects lose meaning if separated from the others. (Note that the very
simple properties, such as Date, usually tend to lose semantic meaning when
taken out of context).

6.3 Adapting External Standards

In addition to adding new NIEM types and properties to NIEM, it is possible to adapt
existing external (non-NIEM) namespaces for use in the NIEM framework. This allows
the use of external standards within NIEM IEPDs, without requiring that the external
standards themselves be NIEM-conformant. The intent here is to allow use of external
standard components exactly as they were defined.

The basic technique for adapting external standards is to wrap the non-conformant XML
Schema types and elements in NIEM-conformant components, maintained in a NIEM-
conformant schema. These wrapper components effectively shadow as much or as little
of the external standard as deemed appropriate, depending on how the wrapper
components are designed. This allows the use of the standard within the NIEM
framework at any granularity, while preserving the semantics and original structure of the
external standard.

External standards do NOT need to be remodeled or placed directly into NIEM — instead
their adapting components can be used within NIEM-compliant IEPDs without requiring
translation on the part of the IEPD designer. However, profiles of the external standards
must be included in the IEPD package.

The main construct available in NIEM 2.0 for use with external standards are external
adapter types, necessary when the external standard provides reusable elements defined
as non-NIEM-conforming types.

The external adapter type is a NIEM-conformant type that contains
e attributes from external namespaces
e elements from external namespaces

The subparts of that adapter type should correspond to a semantically meaningful concept
— in other words, an adapter type should wrap concepts, not just unrelated external
content. The adapter type may reference content from more than one external
namespace, but all content must be from external namespaces.

33

1403
1404

1405

1406
1407
1408
1409
1410
1411
1412

1413
1414
1415

The picture below shows the relationship between the NIEM wrappers and the external

content they adapt:
MIEM -
conforma nt
elerment \t-f
=
NlEM- Gf-WI]"? N |Er|'.'|l|-
conformant - conformant
element type
NIEM- of-tyive
confo rma nt
element

External
adapter
type

’----------.-

Is

simple type

complex type

element

attribute

model group

|
|
|
|
L
LY

attribute group

£

External namespace

--------.-"

There are some special importing and packaging requirements for an IEPD that accesses

external adapter types.

An IEPD that uses an external namespace through adapter

components will require the import of both a schema that contains the NIEM-conformant
components (adapter types) and the non-NIEM conformant external schemas. All the
relevant schemas must be included in the IEPD. But aside from these requirements,
external adapter types can be used in an IEPD just like standard NIEM types — nothing
special is required for designing schemas or instances that use external adapter types.

Here is an example of an external adapter type from the Geospatial external standard in
NIEM 2.0. The adapter type is geo:SingleSitelLandmarkAddressType. Note
that the appinfo information states that this is an external adapter type.

34

H
S
H
(o))

SEARADADDDADADADLADALALALALADLADDODDODDADADDADDLADLDDLDD
BB OG0 LW GG CILGILINININININNMNINNN
OO0~ UTR N OO~ UTRWNIF OO0~

e e e e e e e e e e e e e e T

Adapter schema fragment describing an external adapter type

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:i="http://niem.gov/niem/appinfo/2.0"
xmlns:addr="http://niem.gov/niem/external/urisa-street-address/draft-0.2.0/dhs~-
gmo/1.0.0"

xmlns:geo="http://niem.gov/niem/geospatial/2.0"
targetNamespace="http://niem.gov/niem/geospatial/2.0"”

>

<xsd:complexType name="SingleSiteLandmarkAddressType">
<xsd:annotation>
<xsd:appinfo>
<i:Base 1i:namespace="http://niem.gov/niem/structures/2.0"
i:name="Object"/>
<i:ExternalAdapterTypelndicator>true</i:ExternalAdapterTypelndicator>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexContent>
<xsd:extension base="s:ComplexObjectType">
<xsd:sequence>
<xsd:element ref="addr:SingleSiteLandmarkAddress"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Here is the external content, from the URISA Street address namespace, adapted by this
particular external adapter type:

External schema fragment for external element being adapted

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:addr="http://niem.gov/niem/external/urisa-street-address/draft-0.2.0/dhs-
gmo/1.0.0"
targetNamespace="http://niem.gov/niem/external/urisa-street-address/draft-
0.2.0/dhs-gmo/1.0.0"

>

<xsd:complexType name="SingleSiteLandmarkAddress type">
<xsd:sequence>
<xsd:element name="LandmarkName" type="addr:LandmarkName type"/>
<xsd:element name="CompleteOccupancyldentifier”
type="addr:CompleteOccupancyldentifier type" minOccurs="0"/>
<xsd:element name="PlaceName" type="addr:PlaceName type"/>
<xsd:element name="StateName" type="addr:StateName type"/>
<xsd:element name="ZipCode" type="addr:ZipCode type"/>
<xsd:element name="ZipPlus4" type="addr:ZipPlus4 type" minOccurs="0"/>
<xsd:element name="NationName" type="addr:NationName type" minOccurs="0"/>
<xsd:element name="AddressAttributes"
type="addr:AddressAttributes type" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="action" type="addr:Action type" use="optional"/>
</xsd:complexType>

<xsd:element name="SingleSiteLandmarkAddress"
<type="addr:SingleSiteLandmarkAddress type"/>

35

1470
1471

1472

NN
\]\]
EN@N)

BN NNNNDIN.
0000000000~~~
B ONRO00~IoUl

1485

1486

1487
1488
1489
1490
1491

Finally, here is a fragment of an XML instance that uses this external adapter type and
the external content it adapts:

XML instance example using adapted external standard

<geo:SingleSiteLandmarkAddress xmlns:geo="http://niem.gov/niem/geospatial/2.0"
xmlns:addr="http://niem.gov/niem/external/urisa-street-address/draft-0.2.0/dhs-
gmo/1.0.0">
<addr:SingleSiteLandmarkAddress>
<addr:LandmarkName>Statue of Liberty</addr:LandmarkName>
<addr:PlaceName>
<addr:MunicipalJurisdiction>New York</addr:MunicipalJurisdiction>
</addr:PlaceName>
<addr:StateName>NY</addr:StateName>
<addr:zZipCode>10004</addr:ZipCode>
</addr:SingleSiteLandmarkAddress>
</geo:SingleSiteLandmarkAddress>

7 Conclusion

This paper has outlined the techniques that are available to information practitioners to
extend the NIEM to handle new information exchanges. By proper use of these
techniques within the IEPD development lifecycle, domain modelers have the ability to
leverage the extensive constructs and capabilities of the NIEM data model, while
extending it as necessary, to meet the needs of their particular information exchanges.

36

1492

1493
1494
1495
1496
1497

1498
1499
1500

1501
1502
1503
1504
1505
1506
1507

1508
1509
1510

Appendix A An IEPD Example

This paper is supplemented with an IEPD example called “Commercial Vehicle
Collision” that illustrates extending types using type augmentation in a couple of
different ways as well as the use of associations. The IEPD was constructed without a set
of valid requirements. This example IEPD is strictly for illustrative or training purposes.
It bears no relationship to any official IEPD from any agency or organization.

The IEPD contains most but not necessarily all of the files required by the NIEM IEPD
Specifications (http://www.niem.gov//files/NIEM_IEPD_Requirements v2 1.pdf). It
contains the following files:

e catalog.html

e exchangeSchema.xsd
e extensionSchema.xsd
e metadata.xml

e samplelnstance.xml

e subset.zip

o wantlist.xml

To view the files, unzip the package CommercialVehicleCollision.zip and open
catalog.html in a browser. Once extracted from the archive (zip file), all files can be
accessed through the catalog.

37

1511 Appendix B NIEM 2.0 Release Directory Tree

1512 The following is an alphabetical listing of the directory tree for the NIEM 2.0 Release of
1513 reference schemas. These directories are all under the niem subdirectory.

1514 niem
1515
1516 ansi-nist

1517 L—2.0

1518 ansi-nist.xsd
1519
1520 ansi d20

1521 L—2.0

1522 ansi d20.xsd
1523
1524 apco

1525 L—2.0

1526 apco.xsd
1527
1528 appinfo

1529 L—2.0

1530 appinfo.xsd
1531
1532 atf

1533 L—2.0

1534 atf.xsd
1535
1536 census

1537 L—2.0

1538 census.xsd
1539
1540 dea

1541 L—2.0

1542 dea.xsd
1543
1544 dod_jcs-pub2.0-misc

1545 L—2.0

1546 dod jcs-pub2.0-misc.xsd
1547
1548 domains

1549 emergencyManagement

1550 L—2.0

1551 emergencyManagement.xsd
1552
1553 immigration

1554 L—2.0

1555 immigration.xsd
1556
1557 infrastructureProtection

1558 L—2.0

1559 infrastructureProtection.xsd
1560
1561 intelligence

1562 L—2.0

1563 intelligence.xsd
1564

38

1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621

edxl

internationalTrade
L—2.0

internationalTrade.xsd

9 xdm

L—a.0
jxdm.xsd

screening
L—2.0

screening.xsd

L—>2.0

edxl

edxl.xsd

-cap

L—>2.0

edx1l

edxl-cap.xsd

-de

L—>2.0

exte

edxl-de.xsd

rnal

cap
L—1.1

cap.xsd

de
L—1.0

de.xsd

——dhs—-gmo

L—as

mobileObject
L—1.0.0

mobileObject.xsd

L——multiModalRoute
L—1.0.0

multiModalRoute.xsd
iai-ifc
L—rc2

L———dhs—gmo
L—1.0.0

TFC2X2 FINAL.xsd

1s0-10303-step
L2

L———dhs—gmo
L—1.0.0

configuration.xsd
ex.xsd

150-19139-gmd

39

1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678

L —draft-0.1
gco
L———dhs—gmo

——agmd
L———dhs—gmo

——gmx
L———dhs—gmo
L—1.0

gsr
L———dhs—gmo
L—1.0

gss
L———dhs—gmo

——gts
L———dhs—gmo
L—1.0

L—1.0.

0
basicTypes.xsd
gco.xsd
gcoBase.xsd

.0

applicationSchema.xsd
citation.xsd
constraints.xsd
content.xsd
dataQuality.xsd
distribution.xsd
extent.xsd

freeText.xsd

gmd.xsd
identification.xsd
maintenance.xsd
metadataApplication.xsd
metadataEntity.xsd
metadataExtension.xsd
portrayalCatalogue.xsd
referenceSystem.xsd
spatialRepresentation.xsd

.0

catalogues.xsd
codelistItem.xsd
crsItem.xsd
extendedTypes.xsd
gmx .xsd
gmxUsage.xsd
uomItem.xsd

.0

gsr.xsd
spatialReferencing.xsd

.0

geometry.xsd
gss.xsd

.0

gts.xsd
temporalObjects.xsd

40

1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735

landxml
L—1.1

LandXML-1.1.xsd

ogc-context
L—1.1.0

L———dhs—gmo
L—1.0.0

context.xsd

ogc-filter
L—1.1.0

L———dhs—gmo
L—1.0.0

filter.xsd

ogc-gml
L—3.1.1

L———dhs—gmo
L—1.0.0

gml.xsd

ogc-observation
L —draft-0.14.5

om
L———dhs—gmo
L—1.0.0
commonObservation.xsd
event.xsd
observation.xsd
observationSpecializations.xsd
om.xsd
procedure.xsd
procedureSpecializations.xsd
st
L———dhs—gmo
L—1.0.0
simpleTypeDerivation.xsd
swe
L———dhs—gmo
L—1.0.0

discreteCoverage.xsd
phenomenon.xsd
record.xsd
recordType.xsd

swe.xsd

SWE basicTypes.xsd
temporalAggregates.xsd

ogc-openls
L—1.1.0
L———dhs—gmo
L—1.0.0

ols.xsd

41

1736
1737 0gc-ows

1738 L—1.0.0

1739 L dhs-gmo

1740 L—1.0.0

1741 ows.xsd
1742
1743 ogc-sld

1744 L—1.0.20

1745 L dhs-gmo

1746 L—1.0.0

1747 sld.xsd
1748
1749 ogc-swe-common

1750 L—1.0.0

1751 L———dhs—gmo

1752 L—1.0.0

1753 data.xsd

1754 parameters.xsd
1755 positionData.xsd
1756 sweCommon .xsd
1757
1758 ogc-wfs

1759 L—1.1.0

1760 L —dhs-gmo

1761 L—1.0.0

1762 wfs.xsd
1763
1764 urisa-street-address

1765 L—draft-0.2.0

1766 L———dhs—gmo

1767 L—1.0.0

1768 StreetAddressDataStandard.xsd
1769
1770 ——w3c-xlink

1771 L—1.0

1772 L———dhs—gmo

1773 L—1.0.0

1774 xlinks.xsd
1775
1776 L——w3c-xml

1777 L1998

1778 xml.xsd
1779
1780 ——fbi

1781 L—2.0

1782 fbi.xsd
1783
1784 fips 10-4

1785 L—2.0

1786 fips 10-4.xsd
1787
1788 fips 5-2

1789 L—2.0

1790 fips 5-2.xsd
1791
1792

fips 6-4

42

1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849

L—2.0
fips 6-4.xsd

geospatial
L—2.0

geospatial.xsd

have
L—2.0

have.xsd

hazmat
L—2.0

hazmat.xsd

iso 3166
L—2.0

iso 3166.xsd

iso_ 4217
L—2.0

iso 4217.xsd

iso 639-3
L—2.0

iso 639-3.xsd
itis
L—2.0

itis.xsd

lasd
L—2.0

lasd.xsd

——mmucc_2
L—2.0

mmucc_2.xsd

——mn_offense
L—2.0

mn_offense.xsd

nga
L—>2.0

nga.xsd

niem-core
L—2.0

niem-core.xsd

nlets
L—2.0

nlets.xsd

nonauthoritative-code

L—2.0

43

1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888

L—>2.0

Proxy
L xsd

nonauthoritative-code.xsd

post-canada

post-canada.xsd

L—>2.0

sSar
L—>2.0

L—»2.0

——twpdes
L—2.0

ucr
L—2.0

xsd.xsd

sar.xsd

structures

structures.xsd

twpdes.xsd

ucr.xsd

——unece rec20-misc

L—>2.0

L—>2.0

L—>2.0

unece rec20-misc.xsd

usps_states

usps_states.xsd

ut offender-tracking-misc

ut offender-tracking-misc.xsd

44

1889 Appendix C NIEM 2.0 Code Table Namespaces

1890 The following is an alphabetical listing of namespace prefixes and descriptions for all the
1891 code table namespaces in NIEM 2.0:

1892 e ansi_d20 - Motor vehicle administration codes from ANSI D20, the Data

1893 Dictionary for Traffic Record Systems, maintained by AAMVA, the American
1894 Association of Motor Vehicle Administrators.

1895 e ansi-nist - ANSI/NIST Fingerprint and Biometric standard.

1896 e apco - Association of Public-Safety Communications Officials (APCO) -

1897 International, Inc.

1898 e atf - Bureau of Alcohol, Tobacco, and Firearms.

1899 e can - Province codes for Canada.

1900 e census - Employment codes from the U.S. Census Bureau.

1901 e dea - Drug Enforcement Administration.

1902 e dod_jcs-pub2.0-misc - Intelligence discipline codes from the U.S. Department of
1903 Defense (DoD) Joint Publication 2.01.

1904 e edxl - Emergency Data Exchange Language.

1905 e fbi - FBI code lists for National Crime and Information Center (NCIC-2000),
1906 National Incident-Based Reporting System (NIBRS), and National Law

1907 Enforcement Data Exchange (N-DEX)..

1908 e fips_10-4 - Countries, dependencies, areas of special sovereignty, and their
1909 principal administrative divisions from the Federal Information Processing
1910 Standards (FIPS) 10-4.

1911 e fips_5-2 - Codes for the identification of the states, the District of Columbia and
1912 the outlying areas of the U.S., and associated areas from the Federal Information
1913 Processing Standards (FIPS) 5-2.

1914 e fips_6-4 - Counties and equivalent entities of the U.S., its possessions, and

1915 associated areas from the Federal Information Processing Standards (FIPS) 6-4.
1916 e have - EDXL Hospital AVailability Exchange (HAVE).

1917 e hazmat - Pipeline and Hazardous Materials Safety Administration - Office of
1918 Hazardous Materials Safety.

1919 e iso_3166 - Codes for the representation of names of countries and their

1920 subdivisions from the International Organization for Standardization (1SO) 3166-
1921 1:1997.

1922 e is0_4217 - Codes for the representation of currencies and funds from the

1923 International Organization for Standardization (1SO) 4217:2001.

45

1924
1925

1926
1927
1928
1929
1930

1931
1932

1933
1934
1935
1936

1937
1938
1939

1940
1941

1942
1943

iso_639-3 - Codes for the representation of names of languages - Part 3: Alpha-3
code for comprehensive coverage of languages.

itis - Integrated Transportation Information System.

lasd - Los Angeles County Sheriff’s Department.

mmucc_2 - Model Minimum Uniform Crash Criteria.

mn_off - Statute and offense codes from the state of Minnesota.
nga - National Geospatial Agency.

nlets - NLETS - The International Justice and Public Safety Information Sharing
Network

nonauth - Non-authoritative codes for the direction of a person's pose in an image.
sar - Suspicious Activity Reporting.

twpdes - Terrorist Watchlist Person Data Exchange Standard.

ucr - Crime reporting codes from Uniform Crime Reporting.

unece - Miscellaneous unit of measure codes from the United Nations Economic
Commission for Europe Recommendation No. 20, Codes for Units of Measure
used in International Trade.

usps - U.S. state and possession abbreviations from the U.S. Postal Service
(USPS).

ut_offender - Plea and military discharge codes from the Utah Offender Tracking
Database, version 2.03.

46

(NIEM)

	1 Introduction
	2 NIEM Overview
	3 NIEM IEPD Development Lifecycle - Overview
	4 NIEM Data Model Concepts
	4.1 NIEM Types
	4.2 NIEM Properties
	4.3 NIEM 2.0 Conformant Namespaces
	4.4 NIEM Type and Properties Example

	5 Extension Techniques
	5.1 Designing the Exchange Schema Document Element
	5.2 Designing New NIEM Types
	5.2.1 NIEM Type Composition
	5.2.2 NIEM Type Specialization

	5.3 Adding to Existing NIEM Types
	5.3.1 Adding Metadata
	5.3.2 Adding Augmentations
	5.3.3 Using Element Substitution

	5.4 Choosing an Extension Technique
	5.4.1 Create New NIEM Types or Add to Existing Types?
	5.4.2 NIEM Type Composition or Specialization?
	5.4.3 NIEM Type Specialization or Augmentation?
	5.4.4 Augmentation or Metadata?
	5.4.5 Content or Reference Elements?

	6 Standard NIEM Extensions
	6.1 Roles
	6.2 Associations
	6.3 Adapting External Standards

	7 Conclusion
	Appendix A An IEPD Example
	Appendix B NIEM 2.0 Release Directory Tree
	Appendix C NIEM 2.0 Code Table Namespaces

